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Abstract. Currently, Gurumukhi – a religion-specific language originating from India, ranks as the 14th 

most spoken language and the 18th most popular writing script language of the entire world. However, while 

there exists a large body of literature related to recognition of handwritten texts in various languages, number 

of publications related to recognition of Indian handwritten scripts is considerably smaller. It concerns also 

the case of Gurumukhi. Hence, in the current contribution, we consider Gurumukhi handwritten character 

recognition, to fill the existing practical gap. The proposed approach is based on deep convolutional neural 

networks, and has been applied to the 35 core Gurumukhi characters. Obtained results are promising, as 

accuracy of 98.32% has been achieved for the training data set, and 74.66%,on the test data. These results are 

comparable to results reported in earlier research, but have been obtained without any feature extraction or 

post-processing. 
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1 INTRODUCTION 

Handwritten text recognition has a prominent role, among others, in business, healthcare or 

cultural heritage preservation. Observe that, while computer systems slowly replace handwritten 

documents in day to day practices of today, there is exists very large body of documents that have 

been handwritten and should be digitized. This has to be done, among others, to assure 

preservation of content as pen-and-paper documents have limited lifespan (due to normal ageing 

and degradation). Here, digitization has to involve not only creation of images (which is required 

primarily for historical manuscripts, which are work of art in their own right, and preserving them 

as images is required), but also extraction of their actual content/text (needed for further 

processing/searching/storage). For the latter, text images are usually converted into a machine-

encoded form, using Optical Character Recognition (OCR). Recently, a lot of work has been 

devoted to recognition of printed, as well as handwritten, characters. Obviously, characters 

handwritten by different persons differ in both size and shape; since every individual has different 

handwriting, and thus different form of writing of individual characters. This, in turn, is the main 

source of difficulty for application of computers to handwritten character recognition [1][2]. To 

address this problem, recently, it was proposed to use deep learning and convolution neural 

networks, which tend to be substantially more accurate than the approaches used in the past. 

Abundant literature exists, concerning handwriting character recognition for non-Indian languages 

and scripts that represent them. However, only very few articles are available related to 

recognition of Indian scripts, such as the Gurumukhi. The Gurumukhi is utilized primarily within 

the Punjabi dialect. It has been established to be the world's fourteenth spoken language (as far as 

number of people who use it is concerned). It is also the 18th most popular writing script language 

of the world [3]. Note that speakers, communicating in the Punjabi language (Gurumukhi), are not 

limited only to the states of Northern India, like Haryana and Punjab, and to the Delhi area. This 

language has also spread around the world. Because of its popularity, there exists also a very large 

number of written texts in this language (content of which is represented using the Gurumukhi 

script). Here, the body of written language includes, among others, sacred texts, books, verses, etc. 

Therefore, it is important to create an OCR system for such a rich, and generally utilized dialect, 

which may become useful in different regions [4]. Moreover, note that there is still large number 

of persons who prefer to take records manually (in a written form). Here, note, obviously a lot of 

drawbacks exist in traditional approaches to handwritten documents management. These are, 

among others, storage space, preservation against decay, impossibility of making backups, etc. 

Moreover, the searching operation is extremely difficult (and very time-consuming) in the case of 
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handwritten documents, existing on paper. Therefore, to eliminate these issues, recognition of 

handwritten characters is clearly needed for the Gurumukhi script. 

Our goal is to propose an approach to recognize Gurumukhi handwritten text. Based on analysis of 

available state of the art approaches, we have decided to apply Convolution Neural Networks 

(CNN), which seem to hold the highest promise (at the time of writing this contribution). Here, let 

us note that the earlier work, reported in [3-8], has already used machine learning based 

approaches. However, in this work, feature extraction has been done manually and explicitly. 

Hence, the accuracy of the proposed models depended on the type of features extracted (and on the 

quality of feature extraction itself). To avoid such issues, we have decided to apply a “global 

approach”, where no feature extraction is applied at all, to see what level of accuracy can be 

achieved. Obviously, if successful, the proposed approach can be combined with feature extraction 

to further improve quality of results. 

The remaining part of this contribution is organized as follows. Section 2 presents the main 

features of the Gurumukhi script. Next (in Section 3), we summarize that state of the art of 

handwritten Gurumukhi character recognition. Section 4 outlines the research methodology of the 

proposed CNN-based deep learning model. Initial results of our experiments, with the proposed 

architecture, are discussed in Section 5. A brief conclusion and future scope of possible research 

can be found in Section 6. 

2 GURUMUKHI SCRIPT 

Gurumukhi script is used for writing in the Punjabi language. The word ‘Gurumukhi’ means “from 

the mouth of the Guru”. Gurumukhi script is 18th most popular writing script language of the 

world [3]. The Gurumukhi script has three vowel bearers, thirty-two consonants, six additional 

consonants, nine vowel modifiers, three auxiliary signs and three half characters [6], as shown in 

Figure 1. The Gurumukhi script is written from top to bottom and left to right, and it is not case 

sensitive. In the Gurumukhi script, the characters have an upper horizontal line called headline. In 

this script, some characters are quite similar to each other, which makes their recognition a 

relatively difficult task. For example, in the consonants set, two characters shown by red arrow are 

differentiated only with header lines. In the same way, characters shown by blue arrow are also 

very similar to each other (the difference being the “closing of the loop”). In this work, we have 

focused our attention on recognition of 35 selected characters, i.e. 32 consonants and 3 vowel 

bearers, because these are the core characters in Gurumukhi script. 

 
Figure 1: Full Gurumukhi Character Set 
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3 STATE OF THE ART 

Let us now briefly summarize main pertinent research results. Let us start from observation that 

various machine learning based techniques have already been applied to recognize characters 

written in different languages. Here, let us first note contributions, in which researchers have 

extracted different types of features for the classification purpose. For instance, D. Sharma and 

U. Jain [3] have proposed the Gurumukhi character recognition system based on application of 

machine learning. In their work, S-cell and C-cell has been used, in the Neocognitron technique, to 

extract local features. M. Kumar, M. K. Jindal and R. K. Sharma (in [6]) proposed a model based 

on the diagonal and transitional feature extraction, and used the K-nearest neighbors algorithm 

(KNN) classifier for character recognition. However, in this technique, it is hard to determine the 

nearest parameter value of K. M. Kumar, M. K. Jindal and R. K. Sharma (in [7]) have extracted 

various features, like diagonal, directional and zoning features, and further used the K-NN and the 

Bayesian classifiers, for distinguishing handwriting of different writers. N. Kumar and S. Gupta 

(in [8]) discussed the feature extraction techniques, like diagonal features, linear binary pattern 

(LBP) and transition features and used KNN and Support Vector Machines (SVM) based 

classifiers. Finally, G. Lehal and C. Singh (in [4]) proposed a Gurumukhi script recognition system 

based on multi-classifiers. In all these articles, different combinations of types of features that 

were to be extracted was considered (with various levels of success). However, it is clear that 

success of the selected feature selection approach may depend on the specific features of the 

dataset itself. Hence, it is worthy to consider an approach that is independent of the specific feature 

extraction method and see how successful can it become. 

In the last few years, deep leaning demonstrated remarkable performance in the domain of 

machine learning, and pattern recognition, in particular. Among existing deep learning approaches, 

convolution neural networks (CNN) are one of the most popular models [9]. The CNN approach 

has an edge over other image processing techniques, as the images are processed using a highly 

optimized structure, while the basic idea behind its development was to imitate the human brain 

processing capabilities. The capacity of CNN to effectively display the informative information 

can be improved by varying characteristics of hidden layers, as well as parameters used for 

training in each layer [10]. 

In the literature survey, only very small body of work has been found on attempts at applying 

CNNs to the Gurumukhi character recognition [5]. Here, H. Kaur and S. Rani [11] proposed a 

CNN-based approach. However, it was combined with manual(!) feature extraction, preceding 

feeding the CNN, which is then used for the actual classification of handwritten characters. This 

being the case, we have decided to apply the CNN directly to the preprocessed handwritten images 

of Gurumukhi characters. However, it has to be stressed immediately that, as will be seen, the 

applied preprocessing does not involve any form of feature extraction. 

4 PROPOSED APPROACH 

The proposed approach consists of three main steps. First, data set to be used in the experiments is 

prepared. Second, it is preprocessed to be ready to be fed into the CNN. Finally, the specific CNN 

architecture is designed and applied to the prepared dataset. In Figure 2, we summarize the main 

aspects of each one of these three stages, and follow with a more detailed description of each one 

of them. 

 

 
Figure 2: Summary of preparatory stages of the proposed approach. 
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4.1 Dataset Preparation 

A dataset has been created for all 35 fundamental Gurumukhi isolated characters by 

creating 3,500 images (one image containing a single “version” of one character). For 

preparing such database of 3500 images, 50 people from various age groups and 

education levels, and both genders, wrote the 35 selected Gurumukhi characters on the 

A4 size paper. Obviously, in this way, the constructed dataset includes a wide variety of 

individual renditions of characters, in view of individual writing styles of persons who 

participated in character writing. Each “individual dataset” consists of 35 Gurumukhi 

characters, created by a single participant. However, each individual participant has 

written all 35 characters two times on separate paper sheets (resulting in 70 renditions of 

characters; two of each). A sample dataset is shown in Figure 3. Next, obtained sample 

datasets have been scanned. All individual characters have been cropped manually, from 

the scanned images, using Adobe Photoshop. In this way, 70 cropped images of 

characters, written by each individual participating in our study have been prepared. 

Example of cropped character images can be found in Figure 4. Each cropped image, of 

an individual character, was saved in a separate file, with its corresponding (distinct) label 

name. Overall 100 sample datasets were collected from 50 participants. Thus, the final 

dataset consisted of 70 x 50 = 3,500 images of 35 characters. Next, the dataset has been 

partitioned into two sets, the first set containing 80% of images, to be used as a training 

set, and the remaining 20% to be used as the test set. This is a standard approach used in 

machine learning experiments. 

 
Figure 3: Sample Dataset from one participant 

 
Figure 4: Cropped Character Images 
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4.2 Preprocessing 

Preprocessing converts all obtained images into a common size, to feed them into the CNN. Here, 

the process is illustrated in Figure 5. The scanned and cropped image, of single character, is shown 

in Figure 5(a). Such character image is, first, converted into the grayscale image, as shown in 

Figure 5(b). In the grayscale image, every pixel value represents the brightness level of that pixel 

and it from the 0-255 range. Next, a binary function, with a threshold value of 0.7, is applied to the 

grayscale image, to convert it to a binary image, as shown in Figure 5(c). From that, the largest 

region is segmented out, to remove the noise, as shown in Figure 5(d). Before training the CNN, 

on the prepared images, they are resized to 24x24 pixels. 

 

Figure 5: Phases of the image during preprocessing (a) Original Image, (b) Gray scale Image, (c) Binary 

Image, (d) Inverted Binary Image with largest region (without noise). 

4.3 CNN Model Design 

ACNN can be conceptualized using three basic layers: (a) convolution, (b) maxpooling, and (c) the 

final (or output) layer. In the convolution layer, features are derived from an image using a pre-

defined weight filter. Depending upon the size of the weighting filter, feature maps are 

produced [12][13]. The convolution layer ,at the beginning of the model, merely identifies the 

generic features [12]. As the model’s depth increases, the complexity of the extracted features also 

increases. The feature maps generated by the last convolution layer of the model are much closer 

to the problem at hand. Sometimes these feature maps are too large so, to decrease the number of 

trainable parameters, pooling layers are introduced. The most commonly used pooling layer form 

is the max pooling. Maxpooling layer is used to minimize the number of parameters, in the case 

when images are too large. After convolution and pooling layers, the output is formulated. Note 

that, the convolution and maxpooling layers are only able to derive features and decrease the 

number of parameters. Thus, the role of the output layer (also known as final layer), which is a 

fully connected layer, is to deliver an output in the form of the output classes. The architecture of 

the proposed CNN model, used in our work, comprises of two convolution layers, with alternate 

max-pooling layers, and an output layer, as shown in Figure 6. 

 
 

Figure 6: Layer diagram of the proposed CNN model. 
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In our work, the first convolution layer uses 28 weight filters of size (5*5) on (24*24) images, 

from which 28 feature maps, of size 20*20, are obtained. From the first layer, the corresponding 

28 feature maps are passed to the maxpooling layer with the filter size of (2*2). The maxpooling 

layer produces 28 feature maps of size (10*10), which are again passed through a second 

convolution layer, with 15 weight filters of size (3*3). This creates 15 feature maps of the size of 

(8*8). Resulting features are then passed through a maxpooling layer with the same filter as the 

last maxpooling layer. The final output from these layers is passed to a final layer, i.e. a fully 

connected layer, which uses the Softmax as the activation function. This fully connected layer 

transforms the feature maps to the 35 classes. As a result, the designed CNN model is classifying 

the images of the corresponding 35 Gurumukhi characters [14][15][16]. All layers in this model, 

except the pooling layers, use the Rectified Linear Unit (ReLu) as an activation function. In 

summary, the steps used to apply the proposed CNN architecture to solve the problem of 

Gurumukhi script recognition are as follows. 

 

i. Input: 

Scan the handwritten manuscript. 

Label each character. [3,500 images written by 100 participants] 

ii. Preprocessing: 

a) Convert all character images into the gray-scale format and then invert all pixel value 

changing them into binary form. 

/**Rgb2gray converts: Change over RGB esteems to gray-scale esteems by framing a 

weighted sum of the R, G, and B value of pixel: **/ 

Y = 0.2989 * R + 0.5870 * G + 0.1140 * B(1) 

b) Resize all images into 24*24-pixel value matrices. 

iii. Splitting Dataset: 

Split all image data set into 80% of training and 20 % of testing data at random state 45. 

iv. Use CNN model for character recognition using two convolutional layers with alternate 

max pool layer. 

a) Apply ReLu (Rectified Linear Unit) activation function on the Convolutional 

Layer.       

 

0 0

0( ) { forx

xforxf x 



    (2) 

b) Apply max-pooling layerwith (2*2) pool-size (filter) 

 Input a volume of an image W1×H1×D1 

 Output: 

W2= (W1−F)/S+1      (3) 

H2= (H1−F)/S+1(4)      (4) 

 D2=D1 (5)       (5) 

Here W1, H1, and D1are the width, height and channel of an input image. W2, H2 and 

D2 are the width, height and channel of an output image. F is the size of Filter. S is the 

stride, i.e. the step size of the convolution operation. 

c) Apply Softmax Regression (often used in the final layer of the neural network) to handle 

multiple classes classifications. 
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Where 
( )z  = Previous layer weighted sum of output. 

d) In the end, use ‘Categorical Cross-entropy’ function to determine loss optimization. 

Specifically, use the following function: 
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/**Where the size of the test set is N and the probability of event x evaluated from the 

training set is q(x). This is also known as Monte Carlo estimation**/ 

v. Output: 

This experiment results, for the Gurumukhi character recognition, results in accuracy, for 

the training data, of 98.32%. Furthermore, the testing data accuracy is 74.66% (see, the next 

Section). 

5 EXPERIMENTAL RESULTS AND DISCUSSIONS 

The proposed model has been experimented with using the dataset, which was prepared as 

described in Section 4.1. As noted, for training, 80% of the dataset was used whereas the 

remaining 20% was used for testing purposes. This was done in such way that each of the 35 core 

Gurumukhi characters has been split into 80%-20% groups, to assure balance between “character 

classes” in the training and the testing datasets. 

The CNN model was implemented in Python, using machine learning libraries Tensorflow and 

Keras. The two parameters that impact the efficiency of the CNN model are the learning rate and 

batch size. The learning rate (LR) of a model implies how rapidly the weights of the neurons will 

be adapted. Here, three different LR shave been tried: 0.0005, 0.0007 and 0.0009. The test set 

accuracy graph for different LR’s, at different iterations, is shown in Figure 7. 

 

 
Figure 7: Test data accuracy for each iteration 

 

From Figure 7 it can be observed that, for more than 30 iterations, use of LR=0.0005 results in 

slightly higher accuracy of character recognition (for the test dataset) than the remaining two LR’s. 

However, the results are relatively close to each other. More precise data can be found in Table 1. 

Here, the training set accuracy and the test dataset accuracy for three different LR’s are presented. 

It can be seen that the highest accuracy for LR=0.0005 (after 50 iterations) has been achieved for 

both the training and test dataset accuracy. Hence, LR=0.0005 has been used in subsequent 

experiments. 
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Table 1: Training and test data accuracy at different LR’s after 50 iterations 

 

 

 

 

 

 

 

 

 

Note that the 3,500 resized images (24*24 pixels), used in the experiments, cause a memory 

overflow when considered all at once. Hence, a batch size becomes also a parameter for evaluating 

the performance of the proposed model. Test dataset error has been analyzed for three different 

batch sizes (BS) of 50, 60 and 70. Figure 8 demonstrates the impact of BS on testing dataset error 

for different iterations. From Figure 8, it is clear that the test dataset accuracy is highest at BS=60 

for iterations 16-50. Hence batch size of 60 is preferable when larger number of iterations can be 

applied. 

 

 
Figure 8: Effect of Batch Size on Test Dataset accuracy at LR=0.0005 

 

Table 2 shows the training and test data set accuracy for different batch sizes at LR=0.0005. 

Table 2: Performance at different batch Size at LR = 0.0005 

 

Finally, in Table 3 we compare test data accuracy for all learning rates and batch sizes. This table 

is collectively showing the effect of learning rate and batch size on test dataset accuracy.  
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50 66.32 94.04  

60 71.42 97.83  

70 66.49 98.00 
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Table 3: Test data accuracy of CNN model at different LR and BS 

 

The simulations have been done for different combinations of learning rate and batch size with 

Gaussian filter and it is observed that the highest accuracy of 74.66% was achieved for learning 

rate of 0.0005 and batch size 50. It can also be observed, from this Table, that the system is always 

giving better accuracy for the batch size of 50 for all the three learning rates. Similarly said, 

system performs comparatively better for learning rate of 0.0009. So if batch size is kept small and 

learning rate is high, the best system performance is observed.  

6 CONCLUSION AND FUTURE SCOPE 

In comparison to feature extraction, Convolution Neural Networks (CNN) can directly draw visual 

patterns from the pixelated images. Hence, in this study, a CNN model was applied to Gurumukhi 

character classification. A handwritten dataset of 35 fundamental Gurumukhi characters 

comprising of 100 images for each character written by 50 different persons was prepared to 

represent different writing styles of people. It was established that, for the proposed CNN model, 

the best learning rate is 0.0005 and the batch size of 50. Accuracy obtained for the training data 

was 98.32%, while the testing data accuracy was 74.66%. In the future, we plan to (a) apply the 

proposed model to the complete set of all Gurumukhi characters, (b) develop automatic feature 

extraction approach(es) and combine them with the CNN, and (c) apply the proposed approach to 

the complete scripts / words in the Gurumukhi language. 
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